

it's all about innovation

Novel calibration facility for water flow with large temperature span

Anders Niemann, Danish Technological Institute (DTI) FLOMEKO, Lisboa, 2019

Introduction

- EXISTING test rigs:
 - 5 L/h up to 500 m³/h (gravimetric and reference meters)
 - temperature range from 4 °C up to 85 °C.
- REVAMPED test rig:
 - flow down to 1 L/h
 - flow up to 1000 m³/h in DN400 pipes
 - 1 bar pressure difference across the test section at 1000 $m^3\!/h$
 - Temperature range 4 °C up to 85 °C.
 - Dynamical flow rate patterns
- DIGITIZATION and DIGITALIZATION:
 - Revival of all electronics and cables
 - SCADA system
 - Digitisation of all data
 - Automatisation of the test rigs
 - Digitalisation of certificate generation

Calibration principle

INSTITUT

Reference flow meters Up to 5 DUT's and 1 bar pressure difference across test section at 1000 calibrated in-situ/in-line against m³/h own gravimetric reference Master meters 2 x coriolis 600m? // http://http://h Weighing tank 20 m³ water reservoir 1520 kg Scale

> Pumps 3 x 55 kW

TEKNOLOGISK

Challenges

- Wishes are unlimited budgets are not!
- Traceability: Reference flow meter system vs. gravimetric system
 - Price
 - Space
 - Accuracy, repeatability, and stability
- Storage tank and pumping system
 - Size of tank
 - Pump power needed
 - Electrical power supply
- Data handling How to
 - Acquisition
 - Management
 - Storage

Reference flow metering - consideration

- Two meters in parallel => 500 m³/h in each section => calibration on own gravimetric system.
- MAG-meters
 - Price: Low
 - Accuracy: "Low"
 - Pressure loss: Low
- Coriolis-meters
 - Price: High
 - Accuracy: High
 - Pressure loss: High

2 coriolis flowmeters in parallel 4 Butterfly valves Block and bleed system

Reference flowmetering system

Reference flow metering

- Calibration in-situ: each meter at a time
- Stated accuracy: 0.05 % down to 28 m³/h
- Stated repeatability: 0.05 %
- CMC of existing gravimetric system is 0.05 %
- Expected uncertainty for flows above 500 m³/h is 0.2 % with reference meter system

INSTITUT

TEKNOLOGISK

Storage tank and pumping system

- 20 m³ storage tank (existing)
- At 1000 m³/h the water is changed every 72 sec. (approx.)

Storage tank and pumping system

- The velocities in the recirculation zone close to the outlets are low (≤0.15m/s)
- Avg. fluid velocity in the simulations approx. 8 m/s
- Using all outlets fluid velocity reduces to approx. 4.6 m/s

Pump power at 1000 m³/h

- Pressure loss across reference meters at 500 m³/h: 1 bar
- Potential pressure loss across DUT section: **1 bar**
- Pressure loss in the piping system: 2 bar (estimate based on calculation)
- 165 kW pump power is necessary to pump 1000 m³/h with a total pressure loss of 4.5 bar in circuit.

Data flow – Digitization and digitalization

- Data acquisition
 - How much data or information is needed?
 - Should data be logged every millisecond, second or minut?
- Data management
 - Data flow and how to secure traceability of data
- Data storage
 - Where to store data and how to secure backups, permissions and access

TEKNOLOGISK

